
A Reverse Engineer’s Guide to
AI Interpretability

Dr Andrew Fasano
DEF CON 32

August 11, 2024

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the U.S. Air Force. © 2024 Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. 
Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.



RE Guide to Mechanistic Interp - 2
AF 8/11/24

whoami

• Dr Andrew Fasano
– Cybersecurity researcher
– Member of Technical Staff at MIT Lincoln Laboratory

• Research focused on dynamic analysis of software
– Monitor a system as it runs, figure out why it did what it did

• Open-source projects
– PANDA.re: Whole-system dynamic program analysis
– rode0day.mit.edu: Bug-finding competition
– Coming soon: A platform for dynamic analysis of firmware

• I’m a reverse engineer, not a mathematician

Rode0day

PANDA.re

RPISEC alum

PANDA.re
http://rode0day.mit.edu/


RE Guide to Mechanistic Interp - 3
AF 8/11/24

Motivation for this talk

• Computer programs don’t always do what we want them to do
– Bugs, vulnerabilities, inefficiencies, and backdoors
– Software reverse engineering allows us to identify these differences

• AI systems don’t always do what we want them to do
– Hallucinations, biases, backdoors, training data leakage 
– Can we reverse engineer AI systems to understand how and why they go wrong?

• Benefits from understanding the internals of AI systems
– Improve model performance and identify sources of errors
– Ensure models behave safely and in alignment with our interests
– Extract knowledge learned by models to reused in other contexts
– Guide future AI research



RE Guide to Mechanistic Interp - 4
AF 8/11/24

Game plan

• Intuition and Background

• AI Interpretability

• Pioneering Work

– Neuron Behavior

– Attention Patterns

– Residual Stream

• Closing Thoughts



RE Guide to Mechanistic Interp - 5
AF 8/11/24

Intuition and background

• There are many types of AI systems for a wide variety of applications
• In this talk, we’ll focus specifically on the Generative Pretrained Transformer (GPT)

– Generative: Model produces new content given input
– Pretrained: Model is trained on vast amounts of existing text before use
– Transformer: Utilizes a specific neural network architecture

• The Large Language Models (LLMs) you’re hearing about are built atop GPTs
– Trained on massive amounts of data to calculate internal weights (parameters) that encode “knowledge”
– Models can perform reasonably well on a wide variety of tasks after this training process

LLaMA by Meta



RE Guide to Mechanistic Interp - 6
AF 8/11/24

High level view of LLM data processing

Alright, let's give this a shot. Just remember, if this joke bombs, we can 
always blame it on a zero-day vulnerability in my humor module.

So, here goes:
Why don't hackers ever get hungry?
They always have a byte to eat!

Pauses for groans

Tough crowd, huh? Well, I've got 127.0.0.1 more jokes where that came 
from. But don't worry, I won't subject you to them - that would violate the 
Geneva Convention on cruel and unusual punishment.

Now, if you'll excuse me, I need to go patch my joke database. It seems 
to have more holes than a company's "unhackable" system the day after 
they make that claim.

We're on stage at 
defcon. Make the 
audience laugh

Large Language Model

Built atop GPTs:
• Trained on lots of text
• Produce new text

Text generated by Claude



RE Guide to Mechanistic Interp - 7
AF 8/11/24

Preprocessing input text

We're on stage at defcon

1) Tokenization

2) Token embedding + position encoding

+ 
pos=0

0) Input text

Ve
ct

or
s 

of
 s

iz
e 

N
(E

m
be

dd
in

g 
di

m
en

si
on

)

Width: num. tokens

… 

+
pos=1

+
pos=2

+
pos=3

+
pos=6

… 

• Input text is first split into tokens

• Tokens are converted into N-dimensional vectors 
using an embedding learned during training
– GPT-2: N=768
– LLAMA 405B: N=16,384

• Positional information is added to each vector

• This list of vectors (one per input token) is then 
fed into a transformer

• Key idea: tokens are converted to vectors 
which store information about the token

Note this example ignores prompt engineering for the sake of simplicity



RE Guide to Mechanistic Interp - 8
AF 8/11/24

Transformers

• Transformers are the heart of the GPT model
– Transformers consume and produce data in a high-dimensional space called the residual stream
– Multiple layers of transformers work together to make predictions at each output position

• Transformers read from the residual stream then and add their results back into the stream
– Meaningful information is added to the residual stream by each transformer

• Final result can be mapped back to text with a learned unembedding
– After unembedding we have raw prediction scores (logits) for each possible output token
– Model can select from these to produce output text

Transformer Transformer TransformerVector embedding of 
input token 0 at 

position 0

Vector embedding 
representing 

predictions for output 
at token 1

Layer 0 Layer 1 Layer 2

Key idea: information is stored in the residual stream between transformers for each token



RE Guide to Mechanistic Interp - 9
AF 8/11/24

Multi-token analysis

• Transformers operate for every output position; there is a residual stream for every token
– With N input tokens, final predictions for first N output tokens are ignored
– But transformer calculations (stored in the residual stream) are still important
– Details about early tokens will likely impact subsequent tokens

Transformer Transformer TransformerVector embedding of 
input token 0 at 

position 0

Vector embedding 
representing 

predictions for output 
at token 1

Transformer Transformer TransformerVector embedding of 
input token 1 at 

position 1

Vector embedding 
representing 

predictions for output 
at token 2

Layer 0 Layer 1 Layer 2



RE Guide to Mechanistic Interp - 10
AF 8/11/24

Transformer internals

• Two components inside a typical transformer:
– Attention heads and multilayer perceptron

• Attention heads copy information between tokens
– The audience watched the talk which was was of interest to them.

• Multilayer perceptron (MLP) is a fully connected neural net that runs 
after the attention heads in each transformer
– Each neuron runs its input through a non-linear function to produce output
– Neurons are connected with weights and biases learned in training

Top right figure: Elhage et al. https://transformer-circuits.pub/2021/framework/index.html
Bottom right figure: https://commons.wikimedia.org/wiki/File:Neural_network_explain.png

One 
transformer

Attention heads 
adds data to 
the residual 

stream, then an 
MLP adds 

additional data

Residual stream 
after transformer

Residual stream 
before transformer

Output depends on prior information: 
Plural subject à “them”

https://transformer-circuits.pub/2021/framework/index.html
https://commons.wikimedia.org/wiki/File:Neural_network_explain.png


RE Guide to Mechanistic Interp - 11
AF 8/11/24

Example

• Consider the following, unfinished sentence:
 When Mary and John went to the store,
 John gave a drink to

• A model can make a prediction for the next token by
running each of these tokens through multiple layers of
transformers
– Each token runs through all the transformers
– Information is stored in the residual stream between transformers
– Information is copied forward between tokens as necessary

• We’ll talk about this more this sentence later

Figure from Wang et al. Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small



RE Guide to Mechanistic Interp - 12
AF 8/11/24

Outline

• Intuition and Background

• AI Interpretability

• Pioneering Work

– Neuron Behavior

– Attention Patterns

– Residual Stream

• Closing Thoughts



RE Guide to Mechanistic Interp - 13
AF 8/11/24

AI interpretability

• After a model is trained on copious amounts 
of data, it can produce useful output when 
given previously unseen input data

• How does it do that?
– What did it learn during training?
– Which weights matter for what decisions?

• How can we ever hope to understand or 
modify the internals of a complex system?



RE Guide to Mechanistic Interp - 14
AF 8/11/24

Motivation for interpretability research

• Understand why models behave the way they do
– Increased confidence in behavior
– Identify root cause of failures
– Advance AI theory

• Change model behavior
– Is there a knob within a model for “code quality” that we could turn up? What about others?

• Find unexpected behavior in models
– So you can give a cool DEF CON talk next year



RE Guide to Mechanistic Interp - 15
AF 8/11/24

Types of interpretability

• Behavioral interpretability
• Analyzes responses to various inputs
• Focuses on external behavior rather than internal

• Intrinsic interpretability
• Designing inherently interpretable models

• Example: decision trees
• Often trades complexity for transparency

• Mechanistic interpretability
– Understanding how all the pieces of the model come

together to produce a given result
– Goal: reverse engineer how model produces a prediction
– Our focus for the rest of this talk

Both this joke and the formatted image were generated by Claude



RE Guide to Mechanistic Interp - 16
AF 8/11/24

The challenges of mechanistic interpretability

• Powerful LLMs are massive
– Linux kernel ~10 MB of machine code and data
– LLaMA 405B: 810 GB of weights

• LLMs are trained to produce good output, not to be intrinsically interpretable
– The math doesn’t care about human concepts, abstractions, or “clean” implementations

• Analysis scope: What part(s) of a model should we be analyzing?
– Individual neurons
– Groups of neurons
– Attention heads
– The residual stream
– Other components?



RE Guide to Mechanistic Interp - 17
AF 8/11/24

Outline

• Intuition and Background

• AI Interpretability

• Pioneering Work
– Neuron Behavior

– Attention Patterns

– Residual Stream

• Closing Thoughts



RE Guide to Mechanistic Interp - 18
AF 8/11/24

Three approaches to interpretability

• Let’s examine some pioneering work in mechanistic interpretability

• Reverse engineering neuron behavior
– Features & circuits
– Challenges: polysemantic neurons and superposition

• Reverse engineering attention patterns
– Path patching
– Parallels to reverse engineering

• Reverse engineering the residual stream
– Sparse auto-encoders TransformerResidual 

Stream
Residual 
Stream



RE Guide to Mechanistic Interp - 19
AF 8/11/24

Reverse engineering neurons

• The “Circuits Thread” 
– 2020 work by Olah, Cammarata, Schubert, Goh, Petrov, Carter, Voss, Schubert, Egan, and Lim
– Available at distill.pub/2020/circuits

• Effort to reverse engineer behavior of neurons in
Inception V1 (an image classification model)
– Not generating text
– Internals differ from LLMs built atop GPTs,

but key ideas are similar

• Two notable claims: Neural networks consist of
meaningful features that we can interpret and these
features are connected into circuits Recall: Neurons are connected together within the 

MLP in a transformer block. Weights between neurons 
are learned during train and control the output

Figure from https://commons.wikimedia.org/wiki/File:Neural_network_explain.png

distill.pub/2020/circuits
https://commons.wikimedia.org/wiki/File:Neural_network_explain.png


RE Guide to Mechanistic Interp - 20
AF 8/11/24

Features in a network

• Neural networks contain meaningful features that we can understand
– Neurons may implement features

• Circuits thread identified 9 distinct “curve detector” neurons in 
InceptionV1 which detect curves at different angles
– Figure (right) shows each of these 9 neurons
– Height of line corresponds to how activated the neuron is
– X axis corresponds to the rotation angle of

a synthetic input curve

• This seems to make sense!
– Further confirmed by selecting images

from the dataset where these neurons
activated strongly – they have clear
curves in the expected directions

Figure from Cammarata et al. distill.pub/2020/circuits/curve-detectors/

distill.pub/2020/circuits/curve-detectors


RE Guide to Mechanistic Interp - 21
AF 8/11/24

Circuits form across layers

• Some low-level, interpretable features are detected in early layers
– Some higher-level, interpretable features build off the outputs in later layers

• Building blocks composed together to implement useful behavior
– This is an early science – features are manually identified and labeled
– Some neurons are interpretable, but many are not!

Figures from Cammarata et al. distill.pub/2020/circuits/curve-circuits/

Curve detectors fire strongly on inputs 
with curves in the corresponding angle

https://distill.pub/2020/circuits/curve-circuits/


RE Guide to Mechanistic Interp - 22
AF 8/11/24

Challenge: Monosemanticity versus polysemanticity

• Individual neurons in a neural network 
examine their inputs and calculate an 
output to add to the residual stream
– Example: Detect if token is the subject of 

a sentence
– Example: Detect if the sentence subject 

is singular or plural

• Monosemantic neurons check for a 
single feature in the input

• Polysemantic neurons check for 
multiple input features

• Many neurons are polysemantic, 
making it difficult to analyze them!

ImageNet has a single neuron that detects both
cat faces (left) and fronts of cars (right)

These synthetic inputs were created to maximize the neuron’s activation

Figure from Olah et al. https://distill.pub/2020/circuits/zoom-in

https://distill.pub/2020/circuits/zoom-in


RE Guide to Mechanistic Interp - 23
AF 8/11/24

Challenge: Non-privileged basis & superposition

• It is difficult to understand what the output of a given 
neuron means due to superposition

• Privileged basis: feature are represented along dimensions
– 2D example: The Y dimension is happiness, as happiness increases

a vector points further upwards

• Non-privileged basis: features are expressed in feature space,
but not along the dimensions
– 2D example: happiness is indicated by the line y=x. As happiness

increases, a vector points further upwards and rightwards

• Superposition: A network can store more features than it has
dimensions by storing them at nearly-perpendicular angles
– Think of this as a lossy storage scheme
– If this occurs, features cannot align with the basis

Figures from “Toy Models of Superposition” by Elhage et al. transformer-circuits.pub/2022/toy_model

https://transformer-circuits.pub/2022/toy_model


RE Guide to Mechanistic Interp - 24
AF 8/11/24

Outline

• Intuition and Background

• AI Interpretability

• Pioneering Work
– Neuron Behavior

– Attention Patterns

– Residual Stream

• Closing Thoughts



RE Guide to Mechanistic Interp - 25
AF 8/11/24

Reverse engineering attention patterns

• “Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small”
– 2022 publication by Wang, Variengien, Conmy, Shlegeris, and Steinhardt.
– Available at arxiv.org/pdf/2211.00593

• Effort focused on understanding the model’s “indirect object identification” (IOI) abilities
– Targeting GPT2-small, an LLM with 1.5B parameters

• Recall our prior IOI example: “When Mary and John went to the store, John gave a drink to”
– John is the subject, Mary is the indirect object
– Model should predict the next token as “Mary”

• How does the model make a correct prediction for the next token?

http://arxiv.org/pdf/2211.00593


RE Guide to Mechanistic Interp - 26
AF 8/11/24

Recall: Transformers and attention

Figure from Wang et al. “Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small”

• As the model processes this sentence, 
transformers (attention heads and MLPs) 
operate on each token to build information 
in the residual stream
– Attention heads move information between 

tokens

• GPT2-small architecture
– Each transformer has 12 attention heads
– 12 layers of transformers

• 144 attention heads in the network
– Heads independently process each token
– Need a technique to identify which heads 

matter for final prediction



RE Guide to Mechanistic Interp - 27
AF 8/11/24

Path patching

• Path patching is a strategy for identifying which parts
of a model are involved with a behavior of interest
– Focused on how activation heads add information to

a token’s residual stream

• Simple but valuable idea:
– Feed the model two distinct inputs and cache

internal state (attention head output) while processing each
– Rerun the model from a cached state, but replace

some of the state with data from the other input

• If the model output changes, the swapped state was relevant
– Search can be automated to identify relevant state
– Inputs should be hand crafted to minimize difference given analysis goal

Figure from Wang et al. “Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small”

When Mary and John went to the store, John gave a drink to
When David and John went to the store, John gave a drink to



RE Guide to Mechanistic Interp - 28
AF 8/11/24

IOI circuit

• Path patching reveals which
attention heads are relevant
– Manual analysis of relevant

attention heads to understand
their behaviors

– Note that some attention heads
are redundant as a results of
how this network is trained

• Seven distinct types of attention heads identified!
– Heads work together to pass the relevant information forward to use when predicting the final token
– Heads activate on a token, read information about that token or others and output that information
– Output of heads is stored in the residual stream for a token

Figure from Wang et al. “Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small”



RE Guide to Mechanistic Interp - 29
AF 8/11/24

Evaluating circuit interpretation

• Do claims hold with synthetic or random inputs?
– What does duplicate token attention head focus on in the string “hello foo banana foo”?

• Construct adversarial examples based on our understanding – does model perform worse?
– Adding a 2nd reference to Mary increases the odds of the model’s making an incorrect prediction!

Sentence Proportion of “John” logit 
greater than “Mary”

John and Mary went to the store. John gave a drink to 0.7%
John and Mary went to the store. John had a good day. John gave a drink to 0.4%
John and Mary went to the store. Mary had a good day. John gave a drink to 23.4%



RE Guide to Mechanistic Interp - 30
AF 8/11/24

Path patching versus differential testing

• Path patching looks a lot like differential testing!
– Run a program on multiple inputs and compare behavior

• Lighthouse plugin for IDA / Binary Ninja
– Collect basic blocks covered when processing

different inputs
– Subtract common blocks to identify different

parts of program that process different inputs

• Path patching goes further
– Would there be value in patching

state from one run of a program
to another?

Lighthouse: https://github.com/gaasedelen/lighthouse

https://github.com/gaasedelen/lighthouse


RE Guide to Mechanistic Interp - 31
AF 8/11/24

Is circuit identification like function identification?

• Nothing like a “function call” in a neural network
– Data flow through all neurons in the network from layer 0 to N
– No concept of a call or return

• But distinct neural networks may learn equivalent circuits
– Could we create something like IDA’s FLIRT signatures?
– Could something like symbolic execution be used to learn circuit behavior?

• Could we extract circuits from a neural network to run in isolation to test hypotheses?
– Taking assembly code from a larger binary and running it with Unicorn helps us understand it

FLIRT: Fast Library Identification and Recognition Technology
Unicorn: https://www.unicorn-engine.org

https://www.unicorn-engine.org/


RE Guide to Mechanistic Interp - 32
AF 8/11/24

Outline

• Intuition and Background

• AI Interpretability

• Pioneering Work
– Neuron Behavior

– Attention Patterns

– Residual Stream

• Closing Thoughts



RE Guide to Mechanistic Interp - 33
AF 8/11/24

Reverse engineering the residual stream

• “Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet”
– By Templeton, Conerly, Marcus, Lindsey, Bricken, Chen, Pearce, Citro, Ameisen, Jones, 

Cunningham, Turner, McDougall, MacDiarmid, Tamkin, Durmus, Hume, Mosconi, Freeman, Sumers, 
Rees, Batson, Jermyn, Carter, Olah, and Henighan

– Available at https://transformer-circuits.pub/2024/scaling-monosemanticity

• Goal: decompose the residual stream into a sparse combination of monosemantic features
– Trained a sparse autoencoder (SAE) to predict residual stream values at a specific layer
– SAE is designed to maximize sparsity (few features) while

preserving output accuracy
– Challenge: computationally expensive

• Average features active on a give token < 300
– Automates feature identification, but not understanding
– Can use LLMs with example inputs to hypothesize what

each feature might mean

Feature B

Feature A
Resid

ual st
ream

Decomposing a vector into two features. Note 
features are non-privileged (not aligned with axes)

https://transformer-circuits.pub/2024/scaling-monosemanticity


RE Guide to Mechanistic Interp - 34
AF 8/11/24

SAE identifies monosemantic features

• Successfully extracted millions of features from Claude 3 Sonnet model

• Varying SAE size changes the features identified
– Smaller SAE finds course-grained features while

larger SAE splits features into smaller concepts

• Features are cross modal – same features
capture meaning of both text and images

• Features can be used to steer models
– Altering the residual stream to increase or

decrease identified features changes output
in meaningful and expected ways

Figure from https://transformer-circuits.pub/2024/scaling-monosemanticity

https://transformer-circuits.pub/2024/scaling-monosemanticity


RE Guide to Mechanistic Interp - 35
AF 8/11/24

Identifying inputs that trigger features

Figure from https://transformer-circuits.pub/2024/scaling-monosemanticity

• The “Unsafe code” feature is triggered by insecure code and images related to bad security

https://transformer-circuits.pub/2024/scaling-monosemanticity


RE Guide to Mechanistic Interp - 36
AF 8/11/24

Steering behavior with feature modification

Figure from https://transformer-circuits.pub/2024/scaling-monosemanticity

• Increasing Golden Gate Bridge feature significantly changes output

https://transformer-circuits.pub/2024/scaling-monosemanticity


RE Guide to Mechanistic Interp - 37
AF 8/11/24

Parallels to reverse engineering

• Multi-modal analyses
– Within the residual stream the same features are used for both text and inputs
– Could (future or RE-specific) models learn features that apply to both binaries and source code?

• Unsupervised learning can find features and LLMs can describe features based on examples
– Parallels to ongoing efforts to automate the reverse engineering process

• Identified features can interact like
finite state automata
– Can we reverse engineer these to

find unexpected behavior in models?
– Could we generate adversarial inputs

based on understanding these?

Figure from https://transformer-circuits.pub/2023/monosemantic-features/

https://transformer-circuits.pub/2023/monosemantic-features/


RE Guide to Mechanistic Interp - 38
AF 8/11/24

Outline

• Intuition and Background

• AI Interpretability

• Pioneering Work

– Neuron Behavior

– Attention Patterns

– Residual Stream

• Closing Thoughts



RE Guide to Mechanistic Interp - 39
AF 8/11/24

Tooling for interpretability research

• Limited tooling for interpretability available today
– Many OSS Jupyter Notebooks to reproduce results
– Few general-purpose tools
– Nothing like a centralized platform for analysis (e.g., Ghidra, IDA, or Binary Ninja)

• Great opportunity for reverse engineering community to contribute to this field

TransformerLens:
https://TransformerLensOrg.github.io

Transformer Debugger
https://github.com/openai/transformer-debugger

Google’s “Learning Interpretability Tool” (LIT)
https://pair-code.github.io/lit/

https://transformerlensorg.github.io/
https://github.com/openai/transformer-debugger
https://pair-code.github.io/lit/


RE Guide to Mechanistic Interp - 40
AF 8/11/24

What’s next?

• Future research directions:
– Manipulating identified features to improve model performance
– Scaling SAEs to analyze multiple layers of models
– Improved tooling for visualization, prototyping, and evaluations
– Vulnerability research against LLMs based on low level understanding

• Notable organizations working in this space:
– Big AI labs: Anthropic, Google DeepMind, OpenAI
– Smaller research organizations: EleutherAI, Redwood Research
– Academic research labs: Stanford, UC Berkeley, MIT



RE Guide to Mechanistic Interp - 41
AF 8/11/24

Conclusions

• Mechanistically interpreting the internals of AI systems is a hard, open, and important problem

• The reverse engineering community has extensive experience designing tools and techniques 
to better understand complex systems
– Can we share our experience with this emerging field?
– You don’t have to understand all the math to make

meaningful contributions here – intuition from software
reverse engineering is very relevant

• Mechanistic interpretability community is very welcoming

• Resources to get started:
– These slides will be posted to nation.state.actor
– Neel Nanda’s writings at neelnanda.io/mechanistic-interpretability

A leading mechanistic interpretability researcher (Neel 
Nanda) interviewed a reverse engineer and wrote a 
blog post about the similarities between the fields

https://www.neelnanda.io/mechanistic-
interpretability/reverse-engineering

nation.state.actor
neelnanda.io/mechanistic-interpretability
https://www.neelnanda.io/mechanistic-interpretability/reverse-engineering
https://www.neelnanda.io/mechanistic-interpretability/reverse-engineering


RE Guide to Mechanistic Interp - 42
AF 8/11/24

Backup material



RE Guide to Mechanistic Interp - 43
AF 8/11/24

Prompt engineering

• Input can be structured and augmented before it is provided to an LLM to improve 
performance. This is known as prompt engineering. 

• Original input:
– We're on stage at defcon. Make the audience laugh

• Transformed input:
– SYSTEM: You are a friendly assistant designed to help a user. USER: We're on stage at defcon. 

Make the audience laugh ASSISTANT: 

• Beyond their initial training, models can be fine tuned (i.e., given additional training) to parse 
various formats, for example messages with system, user, and assistant prefixes.
– SYSTEM: Help the user. USER: Where is def con? ASSISTANT: Def con is in Las Vegas
– SYSTEM: You are a 1337 hax0r. USER: Where is def con? ASSISTANT: Go away n00b

1 Text from en.wikipedia.org/wiki/DEF_CON



RE Guide to Mechanistic Interp - 44
AF 8/11/24

Transformer inputs

• Input text is tokenized and one-hot encoded
– Text split split into substrings (tokens)
– Tokens are represented as sparse vectors

• Each token is embedded into dense vector
– Each token is mapped into an array with N 

elements (N is called the “embedding dimension”)
– Embedding is learned during training and captures 

semantic relationships between tokens

• Positional encoding is generated and
combined with token embeddings
– A position-dependent vector is created for each 

token's position and added to the embeddings

• Final input representation is formed
– A sequence of N-dimensional vectors
– One vector per token

https://huggingface.co/spaces/Xenova/the-tokenizer-playground

Key point: Input text is first 
converted into vectors (arrays)



RE Guide to Mechanistic Interp - 45
AF 8/11/24

Transformer output

We're on stage at defcon

Input text

Output vectors

… 

Pos 0 Pos 7

… 

Pos X

Predictions after 
provided input

Unembedding

The

My

I

Once

,

:

where

!

.

known

but

!

Pos 0 Pos 7 Pos X
Select tokens and produce output

M
or

e 
lik

el
y

Transformer

Input processing



RE Guide to Mechanistic Interp - 46
AF 8/11/24

Token selection

• Transformer predicts output tokens
– For every possible token in the vocabulary, the 

model calculates the probability of it being the 
"right" token to output at a given position

– Note model predicts output for each position in 
sequence, including where input is provided!

– Generated “output” begins after end of input

• Transformer output is unembedded
– Convert internal representation of results back into 

the allowed vocabulary of tokens
– Produces scores for each possible token

• Select token to output
– Pick token with best score
– Can add some noise to scores

A
ct

ua
l

Pr
ed

ic
te

d

https://transformerlensorg.github.io/CircuitsVis

What does model expect after “ a”



RE Guide to Mechanistic Interp - 47
AF 8/11/24

Attention in transformers

• Output tokens may be influenced by data computed at prior positions
– Doug and Andrew reviewed the slides. Doug told Andrew

– The audience watched the talk which was was of interest to them.

• Attention heads move information from one token’s residual stream into a subsequent token’s 
residual stream. There are multiple attention heads within each transformer. Each will:
– Select a prior tokens to move information from
– Select the relevant information from the prior token’s residual stream
– Write that information into the current token’s residual stream

• Attention heads learn distinct behaviors which collectively contribute to a models output

Output depends on 
prior information: 
Andrew à Andrew

Output depends on prior information: 
Plural subject à “them” Example attention head pattern 

Destination token on X axis, source on Y

Figure from Understanding Addition in Transformers by Quirke and Barez. ICLR 2024



RE Guide to Mechanistic Interp - 48
AF 8/11/24

Multi-layer perceptrons (MLPs) in transformers

• Each transformer block contains a fully-connected network of neurons that process input

• Each edge in the network has a weight which is multiplied by the prior neuron’s value
• Inputs are added together and then fed into each neuron
• A fixed bias (not shown) is also added to each layer

• Each neuron runs its input through a non-linear
function to produces an output
• Commonly “ReLU” or f(x) -> max(0, x)

• Weights and biases are learned during training

Source: https://commons.wikimedia.org/wiki/File:Neural_network_explain.png



RE Guide to Mechanistic Interp - 49
AF 8/11/24

Levels of analysis

• Can we learn about a model by reverse engineering individual neurons?
– Neurons are low-level building blocks of a model almost like assembly instructions
– But polysemanticity and superposition makes them difficult to interpret

• Can we learn about a model by reverse engineering groups of neurons?
– “Circuits” of neurons work together to complete some action
– Circuits are like code blocks in a program

• Can we learn about a model by reverse engineering the residual stream?
– Directions in the residual stream seem to correspond with human concepts
– Unprivileged basis and superposition make it difficult to interpret
– The residual stream is like stored state passed between functions



RE Guide to Mechanistic Interp - 50
AF 8/11/24

Reverse engineering MLP output

• “Towards Monosemanticity: Decomposing Language Models With Dictionary Learning”
– By Bricken, Templeton, Batson, Chen, Jermyn, Conerly, Turner, Anil, Denison, Askell, Lasenby, Wu, 

Kravec, Schiefer, Maxwell, Joseph, Tamkin, Nguyen, McLean, Burke, Hume, Carter, Henighan, Olah
– Available at https://transformer-circuits.pub/2023/monosemantic-features

• Goal: decompose the output of MLPs into a sparse combination of monosemantic features
– Trained a sparse autoencoder (SAE) to predict MLP output
– SAE is designed to maximize sparsity (few features) while

preserving output accuracy
– Analyzing a model with just a single transformer

• After features are identified, automatically create
human-interpretable descriptions using an LLM

Feature B

Feature A

MLP output ve
cto

r

Decomposing a vector into two features. Note 
features are non-privileged (not aligned with axes)

https://transformer-circuits.pub/2023/monosemantic-features


RE Guide to Mechanistic Interp - 51
AF 8/11/24

Interactive feature browser

• Interface to view individual features with details of how they fire on various tokens and text

https://transformer-circuits.pub/2023/monosemantic-features/vis/a1.html#feature-2185

https://transformer-circuits.pub/2023/monosemantic-features/vis/a1.html


RE Guide to Mechanistic Interp - 52
AF 8/11/24

Other notable interpretability results

• Reverse engineering modular arithmetic
– Nanda et al. 2023.
– ICLR paper: https://arxiv.org/pdf/2301.05217

• Casual Scrubbing approach to validate interpretability results
– Chan et al. 2022
– https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN

• Reverse engineering parenthesis balancing with casual scrubbing
– Chan et al. 2022
– https://www.alignmentforum.org/posts/kjudfaQazMmC74SbF

Mapping an “interpretability hypothesis” 
(I) onto a neural network (G).

Figure from Casual Scrubbing https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN

https://arxiv.org/pdf/2301.05217
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN
https://www.alignmentforum.org/posts/kjudfaQazMmC74SbF/causal-scrubbing-results-on-a-paren-balance-checker
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN

